Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Endocrinology and Metabolism ; : 552-557, 2022.
Article in English | WPRIM | ID: wpr-937422

ABSTRACT

Sestrin2, a well-known adenosine monophosphate-activated protein kinase (AMPK) regulator, plays a protective role against metabolic stress. The β3-adrenergic receptor (β3AR) induces fat browning and inhibits muscle atrophy in an AMPK-dependent manner. However, no prior research has examined the relationship of sestrin2 with β3AR in body composition changes. In this study, CL 316,243 (CL), a β3AR agonist, was administered to wild-type and sestrin2-knockout (KO) mice for 2 weeks, and fat and muscle tissues were harvested. CL induced AMPK phosphorylation, expression of brown-fat markers, and mitochondrial biogenesis, which resulted in the reduction of lipid droplet size in inguinal white adipose tissue (iWAT). These effects were not observed in sestrin2-KO mice. In CL-treated soleus muscle, sestrin2-KO was related to decreased myogenic gene expression and increased levels of muscle atrophy-related molecules. Our results suggest that sestrin2 is associated with beneficial β3AR-mediated changes in body composition, especially in iWAT and in the soleus.

2.
Diabetes & Metabolism Journal ; : 506-511, 2022.
Article in English | WPRIM | ID: wpr-924927

ABSTRACT

Endothelial dysfunction is strongly linked with inflammatory responses, which can impact cardiovascular disease. Recently, G protein-coupled receptor 40 (GPR40) has been investigated as a modulator of metabolic stress; however, the function of GPR40 in vascular endothelial cells has not been reported. We analyzed whether treatment of GPR40-specific agonists modulated the inflammatory responses in human umbilical vein endothelial cells (HUVECs). Treatment with LY2922470, a GPR40 agonist, significantly reduced lipopolysaccharide (LPS)-mediated nuclear factor-kappa B (NF-κB) phosphorylation and movement into the nucleus from the cytosol. However, treatment with another GPR40 agonist, TAK875, did not inhibit LPS-induced NF-κB activation. LPS treatment induced expression of adhesion molecules vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) and attachment of THP-1 cells to HUVECs, which were all decreased by LY2922470 but not TAK875. Our results showed that ligand-dependent agonism of GPR40 is a promising therapeutic target for overcoming inflammatory reactions in the endothelium.

3.
Diabetes & Metabolism Journal ; : 356-365, 2014.
Article in English | WPRIM | ID: wpr-59599

ABSTRACT

BACKGROUND: Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist has a wide-ranging influence on multiple components of metabolic syndrome. The Otsuka Long-Evans Tokushima Fatty (OLETF) rat is a useful animal model of metabolic syndrome. To determine genes related to metabolic syndrome, we examined overlapping genes that are simultaneously decreased by PPAR-gamma agonists and increased in OLETF rats using microarrays in two different models. METHODS: In the first microarray analysis, PPAR-gamma agonist-treated db/db mice were compared to standard diet-fed db/db mice. In the second microarray analysis, OLETF rats were compared to Long-Evans Tokushima Otsuka (LETO) rats (control of OLETF rats). RESULTS: Among the overlapping genes, in the present study, we validated that lipocalin-2 expression was significantly decreased in the visceral adipose tissue of PPAR-gamma agonist-treated db/db mice compared to standard diet-fed db/db mice and increased in OLETF rats compared to LETO rats using real time reverse transcription polymerase chain reaction. Furthermore, we showed for the first time that lipocalin-2 expression was significantly increased in the visceral adipose tissues of obese humans compared with nonobese humans. In addition, the expression level of lipocalin-2 in human visceral adipose tissue had a significant positive correlation with body mass index, serum interleukin-6, adipocyte fatty acid binding protein levels, and white blood cell count. CONCLUSION: Lipocalin-2 was confirmed to be a significant adipokine affected by PPAR-gamma agonist and obesity in the present study. Also, for the first time in human visceral adipose tissue, it was determined that the expression of lipocalin-2 from obese humans was significantly increased and correlated with circulating inflammatory markers.


Subject(s)
Animals , Humans , Mice , Rats , Adipocytes , Adipokines , Body Mass Index , Carrier Proteins , Genes, Overlapping , Interleukin-6 , Intra-Abdominal Fat , Leukocyte Count , Microarray Analysis , Models, Animal , Obesity , Peroxisomes , Polymerase Chain Reaction , PPAR gamma , Rats, Inbred OLETF , Reverse Transcription , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL